

KNOWING THE VALUE OF A MATERIAL: LIFECYCLE ANALYSIS WITH GREET

Hao Cai

Principal Environmental Analyst

Systems Assessment Center

Argonne National Laboratory

March 23rd, 2021

Addressing Embodied Carbon Emissions Is A Key to Addressing Building Sustainability

Global CO₂ Emissions by Sector

Buildings generate nearly 40% of annual global GHG emissions

Illustrative Tradeoffs Between Embodied Energy and Operational Energy: MJ/M²

■ Operational Energy ■ Embodied Energy

Addressing embodied energy/GHGs become an integral part of pursuing net zero energy buildings

Carbon-advantaged materials are a key

With BTO Support, Argonne Is Expanding Its GREET LCA **Model for New Building Technologies and Materials** Oceania, 1.6% 45000 VEHICLE CYCLE (GREET 2 Series) Asia, 12.3% Sub-Saharan Africa GREET 2 model: /ehicle cycle modeling for 0.7% 40000 Middle East and North Other, 6.1% Africa, 1.4% North America, 66.2% 35000 30000 Europe, 15.4% South America, 2.4% **GREET 1 model:** 25000 Fuel-cycle (or well-to-wheels, WTW) modeling of vehicle/fuel systems Central America & 20000 Caribbean, 0.1% 15000 **≇**OAK RIDGE 10000 Research Institution 7% Non-profit 5000 Organization Private Consulting Energy Agency Academia. Education NATIONAL 53% TECHNOLOGY LABORATORY Industry 18% PHI **RFA UCDAVIS** California Environmental Protection Agency **⊘** Air Resources Board Government FAA <u>UC</u>DAVIS Agency aramco ConocoPhillips **MREL** growth energy PetroChina

GREET Building LCA Module for Building Materials and Whole Buildings

Building LCA: Cradle-to-Grave Consideration of A Building Material to Address Its Energy and Environmental Footprints

All inputs (materials, energy, and water) have their own life cycles and footprints!

GREET Building LCA Methodologies

Thorough, consistent LCA methodologies

- Clearly defined and consistent system boundary
- Defining and using a performance-equivalent functional unit is key to comparable LCA among building technologies

Data is Key to Detailed and Reliable LCA: Data sources for GREET building LCA

Extensive GREET background data for materials and processes

> Process energy such as natural gas and electricity

• Process materials/chemicals such as acid, base, plastics

Building material manufacturers and technology developers: NAIMA (insulation), Gypsum Board Association, ARMA (asphalt singles), AISI (steel), Vinyl Siding Institute, EPS Industry Alliance, Kingspan (VIP)

Open literature and results

- Journal articles
- Industry studies/reports
- Manufacturer EPDs

Engineering modeling

- Process engineering modeling with Aspen-Plus for new materials and processes
- Leveraging building energy models and building technology performance assessment for equivalent service functions

DOE and other agencies R&D results

- ABC teams for new building technologies
- EERE transportation programs on steel, aluminum, foam products, etc.
- NIST of Commerce Department

Leverage other LCA studies/models

- Literature
- Building LCA models, e.g., BEES, Athena Impact Estimator

- Material requirements and manufacturing processes
- Supply chains, recycling, and reuse of materials
- **Quality and performance attributes**

GREET Building LCA Leverages Extensive Coverage and Data in GREET

- GREET covers five energy sectors and >60 material groups
- GREET biomass and bioproduct LCA can be leveraged to address emerging carbon negative materials
- iled LCI data have been developed for these sectors and materials

Material Type	Number in GREET	Examples
Ferrous Metals	3	Steel, stainless steel, iron
Non-Ferrous Metals	12	Aluminum, copper, nickel, magnesium
Plastics	23	Polypropylene, nylon, carbon fiber reinforced plastic
Vehicle Fluids	7	Engine oil, windshield fluid
Others	17	Glass, graphite, silicon, cement
Total	62	

Existing Carbon Sources Offer Ample Opportunities for Potentially Carbon-Negative Building Materials

Biomass-Based Materials

- Short-rotation, fast growing biomass can be a promising source of sequestered carbon to produce low-carbon building materials, e.g., insulation materials, carpet materials, pipes, etc.
- Long-term softwood/hardwood trees can be feedstock for ideal, <u>carbon negative</u> <u>structural building materials</u>, e.g., cross laminated timber (CLT)
- It offers potentials to produce <u>carbon-negative</u> <u>materials</u> when carbon sequestration/storage/recycling/utilization strategies are deployed.

Carbon-Absorption/\(\bigve{\text{Mineralization Materials}}\)

Rock and mud-like wastes from mining, cement and aluminum production, coal burning, and other large-scale industrial processes present great potentials for permanent absorption/mineralization of ambient CO₂ emissions.

Industrial/Municipal Waste-Derived Materials

Recycle, remanufacturing, and reuse carbon-rich industrial and municipal wastes, such as textile, concrete/asphalt, alkaline solid wastes, biochar shift waste carbon sources from landfill, which may lead to negative GHG emission impacts, to a carbon sink as building materials.

Pulling CO₂ from the air/ manufacturing processes

<u>Capturing CO₂ emissions</u> from the air and emission-intensive manufacturing processes such as the clinker production process for cement production opens door for utilizing the otherwise emitted CO₂ <u>as a useful building block to produce carbonnegative building materials</u>.

Life-Cycle Analysis Is Needed to Understand the Carbon Value of Emerging Carbon Negative Building Materials

Direct carbon

- Process energy
- CO₂ sequestration
- CO₂ release during use phase and end-of-life

Indirect carbon

- Material inputs
- Logistics
- CO₂ absorption
- CO₂ mineralization

Key issues

- Supply chain energy/material balances
- Carbon source
- Carbon fate
- Recycled carbon
- Shifted paradigm
 (avoided counterfactual impacts)

 Argonne

GREET Life-Cycle Analysis Develops Knowledge About the Carbon Value of Materials Made of Carbon-Negative (Biogenic Carbon) Sources

- Negative carbon
 feedstock (e.g., biomass)
 holds promises for great
 carbon benefits relative
 to fossil carbon
 feedstocks (e.g., natural
 gas).
- LCA illuminates life-cycle carbon value of materials made of carbon-negative sources and identifies opportunities to mitigate embodied carbon impacts.

The GREET building LCA module is Used to Address Insulation Materials

- LCA methodology is developed
- The GREET building LCA module architecture was designed with interactive features

Working Together, Argonne Life-Cycle Analysis Aims to Inform Carbon Values of Building Technology Research and Development for Deep-Decarbonization of Building Materials

Lifecycle Analysis (LCA) Modeling Tool to evaluate impact of embodied carbon/energy of buildings and to inform agency research investments to advance sustainable building technologies and practices.

Addressing embodied carbon/energy impacts of building materials and construction, accounting for 11% of carbon emissions worldwide

As building energy efficiency improves, addressing embodied energy/carbon of building materials becomes more critical for building decarbonization.

- Beta-Version of GREET Building LCA Module
- Life-Cycle Analysis of selected building insulation materials to identify hotspot GHG sources

NEW DEVELOPMENTS

- Assist BTO ABC FOA Teams with embodied carbon analysis of their technologies
- Expand Lifecycle Inventory data for new building materials, components, and technologies
- Offer guidance for development and deployment of sustainable building components and technologies

WE START WITH YES, WE END WITH THANK YOU.

Questions & Feedback?

